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Abstract
The present study examined how task priority influences operators’ scanning patterns and trust ratings toward imperfect 
automation. Previous research demonstrated that participants display lower trust and fixate less frequently toward a visual 
display for the secondary task assisted with imperfect automation when the primary task demanded more attention. One 
account for this phenomenon is that the increased primary task demand induced the participants to prioritize the primary 
task than the secondary task. The present study asked participants to perform a tracking task, system monitoring task, and 
resource management task simultaneously using the Multi-Attribute Task Battery (MATB) II. Automation assisted the 
system monitoring task with 70% reliability. Task load was manipulated via difficulty of the tracking task. Participants were 
explicitly instructed to either prioritize the tracking task over all other tasks (tracking priority condition) or reduce tracking 
performance (equal priority condition). The results demonstrate the effects of task load on attention distribution, task perfor-
mance and trust ratings. Furthermore, participants under the equal priority condition reported lower performance-based trust 
when the tracking task required more frequent manual input (tracking condition), while no effect of task load was observed 
under the tracking priority condition. Task priority can modulate automation trust by eliminating the adverse effect of task 
load in a dynamic multitasking environment.
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1  Introduction

Many professional tasks such as controlling an aircraft (e.g., 
Billings 1997), a robotic arm (e.g., Li et al. 2014), and an air 
traffic control system (e.g., Loft et al. 2016) require opera-
tors to perform multiple concurrent tasks. A human operator, 
as often conceptualized as a limited-capacity information 
processor (Neisser 1980), is assumed to allocate attentional 
resources to meet the demand of each task by systemati-
cally adjusting resource allocation policy (Kahneman 1973; 
Wickens et al. 2015; Yamani and Horrey 2018). However, 
modern applied tasks often impose heavy computational 
and processing demands, necessitating the use of auto-
mation to successfully and efficiently execute its mission. 
Automation is often defined as a technological system that 
performs functions that can or cannot be accomplished by 

human operators (Bainbridge 1983; Parasuraman et al. 2000) 
and hypothesized to systematically reduce the attentional 
demand of the required task at various human information-
processing stages including sensory processing, perception/
working memory, decision making, and response selection 
(Yamani and Horrey 2018).

The proliferating use of automation has shifted the opera-
tor’s role from actively controlling the system to passively 
monitoring system behavior (Bainbridge 1983). Unfortu-
nately, research has demonstrated that humans are particu-
larly poor at monitoring performance for a period of time 
(e.g., vigilance decrement; Mackworth 1948; Molloy and 
Parasuraman 1996; Warm et al. 2008; McCarley and Yamani 
2021). To aid with this task, practitioners developed alerted-
monitor systems to present the state of an automated system 
at every moment and help direct the operators’ attention to 
system errors. However, alerted-monitor systems can pro-
duce signaling errors (i.e., false alarms and miss events) 
due to the system’s threshold setting (Getty et al. 1995). 
Such signaling errors from an automated system could influ-
ence an operator’s trust toward the automated system (e.g., 
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Chancey et al. 2017), delaying human response (Breznitz 
1984; Getty et al. 1995; Sorkin 1988) and increasing work-
load (Dixon and Wickens 2006).

Trust is a critical factor for successful human–automation 
interaction (Hoff and Bashir 2015; Lee and Moray 1992; Lee 
et al. 2021; Long et al. 2022; Lyons and Stokes 2012; Muir 
1994; Muir and Moray 1996; Schaefer et al. 2016; Paras-
uraman and Riley 1997; Yamani et al. 2020). Human–auto-
mation trust refers to “an attitude that an agent will help 
achieve an individual’s goals in a situation characterized by 
uncertainty and vulnerability” (Lee and See 2004, pp. 51). 
Though human–automation trust has been linked with opera-
tors’ strategies for using automation (Chancey et al. 2017; 
Karpinsky et al. 2018), the psychological mechanism that 
underlies human–automation trust is unknown. Established 
upon previous frameworks of interpersonal trust (Rempel 
et al. 1985; Barber 1983) and Muir’s work (Muir 1987, 
1994; Muir and Moray 1996), human–automation trust has 
been theorized to arise from three separate informational 
sources, including performance (i.e., what the automation is 
doing), process (i.e., how the automation works), and pur-
pose (i.e., the designer’s intent for developing the automa-
tion; Lee and Moray 1992). Empirical evidence suggests 
that the three dimensions capture different trajectories of 
human-automation trust (Chancey et al. 2017; Karpinsky 
et al. 2018; Long et al. 2020; Sato et al. 2020). For example, 
in a study that manipulated perceived risk and task load, 
only performance-based but not process- or purpose-based 
trust was reliably modulated when the participants interacted 
with a novel alerted-monitor system for the first time (Sato 
et al. 2020).

Several researchers have examined the influence of task 
load on human–automation trust in multitasking environ-
ments (Bailey and Scerbo 2007; Karpinsky et al. 2018; Sato 
et al. 2020). For example, Karpinsky et al. (2018) examined 
the effect of task load on human–automation trust in a low-
fidelity simulator. They asked undergraduate participants to 
concurrently perform a tracking task manually and a system 
monitoring task assisted by an imperfect signaling system 
with 70% reliability in the Multi-Attribute Task Battery 
(MATB-II; Santiago-Espada et al. 2011). Task load was 
manipulated via difficulty levels of the tracking task. Results 
indicated that the participants rated lower performance- and 
process-based trust toward the signaling system under the 
high task load condition than the low task load condition. 
Karpinsky et al.’s (2018) analysis of trust revealed that the 
participants’ ratings reflected their perception of the automa-
tion’s behavior and mechanism. A more recent study demon-
strated that this adverse effect of workload on performance-
based trust only arises when operators perceive high risk 
(Sato et al. 2020). Additionally, analysis of eye movement 
showed less fixation on a task monitored by the signaling 
system (i.e., system monitoring task) under the high task 

load condition than the low task load condition, suggesting 
that attention allocation is a critical factor that influences 
human–automation trust in a dynamic multitasking environ-
ment assisted with imperfect automation. Specifically, their 
results are consistent with the view that human–automation 
trust depends on the extent to which attentional resources 
are allocated to scan the behavior of the automation. Yet, 
the causal relationships among attention allocation and trust 
remain largely unknown.

What factors potentially influenced the participants’ trust 
and their scanning strategies in high task load conditions? 
A possible account for lower trust rating and fewer fixations 
on the automated task in the high task load condition is that 
operators placed a higher priority on the tracking task. The 
high task load condition demanded more frequent manual 
input with more force than the low task load condition in the 
tracking task, which could have encouraged the participants 
to attend to the tracking task more. This change in task prior-
ity might have caused participants to reduce their sampling 
of behaviors of the signaling system. Consequently, partici-
pants will not have enough information to assess the capability 
of the signaling system, lowering trust toward the signaling 
system. Task priority is conceptualized as the value of a task 
(Gutzwiller et al. 2014; Gutzwiller and Stizman 2017; Wick-
ens et al. 2016). Freed (2002) suggested that task priority is 
influenced by various information sources including urgency, 
importance, task duration, and interruption cost. Several pre-
vious studies have attempted to directly examine the effect 
of task priority in multitasking environments and provided 
mixed results (Gilbert and Wickens 2017; Gopher et al. 1982; 
Gutzwiller et al. 2014; Gutzwiller and Sitzman 2017; Wickens 
et al. 2016). For example, Gopher et al. (1982) successfully 
manipulated task priority by providing continuous feedback 
on the participant’s tracking performance and instructing them 
to prioritize the tracking task at a certain level (i.e., 30%, 50%, 
and 70%). Additionally, the researchers presented a desired 
performance line which denotes the target performance level 
of the tracking task and serves as an index of the participant’s 
tracking performance. However, more recent works demon-
strated a minimal effect of task priority (Gilbert and Wickens 
2017; Gutzwiller et al. 2014; Gutzwiller and Sitzman 2017; 
Wickens et al. 2016). In these recent studies, participants were 
verbally instructed to prioritize the tracking task or prioritize 
all tasks equally without specifying the target performance 
level, which could be responsible for the lack of the reliable 
effect of task priority manipulation. Gutzwiller and Sitzman 
(2017) suggested that the lack of effect is not due to the task 
load, but it was due to the participants sequentially performing 
the task. Additionally, Gilbert and Wickens (2017) suggested 
that the magnitude of the effect depends on the participant’s 
evaluation of the task’s priority. Based on Yamani and Hor-
rey’s (2018) theoretical model of human–automation interac-
tion, we speculated that participants were not able to update 
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their resource allocation policy, since they could not evaluate 
their performance without objective target performance level.

The present study examined the effect of task priority on 
attention allocation and trust toward an imperfect signaling 
system in a simulated environment using the MATB-II. The 
participants performed three concurrent tasks (i.e., tracking 
task, system monitoring task, and resource management task) 
in the MATB environment. We measured attention allocation 
via eye movements, specifically percent dwell time (PDT) 
on area of interests (AOIs) within the displays for the three 
tasks. Previous research used PDT as a measure of attentional 
resources in applied settings (Horrey et al. 2006; Schriver et al. 
2017; Wickens et al. 2003) which is applicable to the current 
experiment. We used the trust questionnaires developed in Jian 
et al. (2000) and in Chancey et al. (2017) to measure trust 
in automation. In brief, these two questionnaires have been 
implicated to measure two separate constructs as the one gen-
erated by Jian et al. (2000) was determined empirically while 
the other generated by Chancey et al. (2017) was theoretically 
grounded based on Lee and See’s (2004) triadic model of auto-
mation trust. In addition to task load as in Karpinsky et al. 
(2018), task priority was manipulated based on Gopher et al.’s 
(1982) work. In Gopher et al.’s (1982) study, participants in 
the tracking priority condition were encouraged to improve 
their tracking performance by 20 percent more over their own 
baseline performance level, while those in the equal priority 
condition were encouraged to perform the tracking task 20 
percent less than the baseline. The present study goes beyond 
prior works (Gilbert and Wickens 2017; Gutzwiller et al. 2014; 
Gutzwiller and Sitzman 2017; Wickens et al. 2016) by demon-
strating an effect of task priority using Gopher et al.’s (1982) 
method. We predicted that participants would display lower 
trust and fixate less frequently toward an imperfect signaling 
system in the high task load condition than the low task load 
condition, as observed in the previous studies (Karpinsky et al. 
2018; Sato et al. 2020). Furthermore, we predicted that the 
effect of task load on attention allocation and trust would be 
diminished when participants equally prioritized the tracking 
task in high task load condition. Specifically, participants in 
high task load condition would present similar trust ratings 
and eye movements to previous studies (Karpinsky et al. 2018; 
Sato et al. 2020) when the tracking task is prioritized. How-
ever, trust ratings and eye movements would be comparable 
between the task load conditions when participants equally 
prioritized all the tasks.

2 � Methods

2.1 � Participants

Forty participants (31 females and 9 males; M = 21.05 years, 
SD = 6.25) were recruited from Old Dominion University 

(ODU). All participants had a normal or corrected-to-nor-
mal vision and normal color perception. Participants were 
compensated with research credits for their participation. 
This research complied with the American Psychological 
Association Code of Ethics and was approved by the College 
of Sciences Institutional Review Board at ODU. Informed 
consent was obtained from each participant.

2.2 � Apparatus

A Samsung T24C550 23.6″ LED monitor (1920 × 1080) 
with a frame rate of 75 Hz was used for the study. The moni-
tor was placed 80 cm away from the chin rest. MATB-II 
(Santiago-Espada et al. 2011) was run on Windows 7 (Dell 
OptiPlex 9020). EyeLink II (SR Research, Mississauga, 
Ontario, Canada) was used to record the participant’s eye 
movement with a sampling rate of 250 Hz. The experiment 
took place in a quiet room with dimmed light.

2.3 � MATB‑II tasks

MATB-II (Santiago-Espada et al. 2011) is a software devel-
oped by NASA Langley Research Center, Hampton, VA, 
designed to assess human performance in a simulated envi-
ronment that hosts flight-related tasks. Participants in the 
present study performed the tracking task, system monitor-
ing task, and resource management task. Figure 1 presents 
a sample display of the MATB-II task.

2.3.1 � Tracking task

In the compensatory tracking task, participants controlled 
the joystick to keep the moving circular target within the 
dotted square. The circular target depicts the direction in 
which the aircraft moves, while the dotted square reflects 
the designated route. In the experimental session, the cir-
cular target deviated from the dotted square by setting the 
frequency of the force function to either 0.12 Hz or 0.06 Hz 
(i.e., high or low task load condition, respectively). In the 
practice session, the frequency of the force function was set 
to 0.09 Hz. The program computed the root mean squared 
error (RMSE) by sampling the participant’s input in the XY 
dimension at 20 Hz. The average RMSE was computed for 
each block to assess tracking performance.

2.3.2 � System monitoring task

Participants monitored the four vertical gauges and cor-
rected the vertical fluctuating pointer at the lower or upper 
extremity. The four vertical gauges represent the tem-
perature and pressure of the aircraft’s two engines. The 
rectangular box (i.e., signaling system) above the gauges 
presents the engine’s state (i.e., normal or warning). The 
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engine is in “normal” state when a green rectangular box 
is illuminated. A green rectangular box illuminates when 
the vertical pointer fluctuates between the center of the 
vertical gauge. The engine is in a “warning” state when a 
red rectangular box is illuminated. A red rectangular box 
illuminates when the vertical pointer hits the extremity 
of the vertical gauge. For each block, 28 hit events and 
12 false alarm (FA) events occurred randomly (70% reli-
ability). The present study excluded miss events, because 
task performance and trust did not differ between miss and 
FA event in the Karpinsky et al. (2018) study. During a hit 
event, the vertical fluctuating pointer hits either extremity 
of the vertical gauge turning the green rectangular box 
off and illuminating the red rectangular box. In this case, 
participants were asked to respond to the signaling system 
and correct the vertical fluctuating pointer using a mouse. 
Specifically, participants clicked the red rectangular box, 
green rectangular box, and the corresponding gauge 
labeled F1–F4. During a FA event, the green rectangular 
box turns off, and the red rectangular box illuminates even 
though the vertical fluctuating pointer did not hit either 

extremity of the vertical gauge. In this case, participants 
were asked to respond only to the signaling system.

2.3.3 � Resource management task

Participants maintained fuel in Tank A and Tank B, 
located next to letters A and B, respectively. The depletion 
rate of Tank A was set to 1,000 units per minute, while 
Tank B was set to 500 units per minute. When the tank’s 
volume is below 2,500 units, participants transferred fuel 
from lower supply tanks, located next to letter C–F. Fuel 
can be transferred using a mouse to click the correspond-
ing pumps, labeled with numbers from 1 to 8. The flow 
rate of the pump was set to 900 units per minute. Each 
block included eight pump failure events where a pump 
deactivates for 10 s. The pump presents three different 
states represented by colors. A green pump indicates that 
the pump is activating. A white pump indicates that the 
pump is deactivated but can be activated anytime. A red 
pump indicates a pump failure event.

Fig. 1   Sample display of MATB-II. System monitoring (top left), tracking task (top center), and resource management task (bottom center)
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2.4 � Design

The present study employed a 2 × 2 mixed design with Task 
Priority (equal vs. tracking) as a between-subjects factor 
and Task Load (low vs. high) as a within-subjects factor. 
Dependent variables were subjective workload, trust, atten-
tion allocation, tracking performance, system monitoring 
performance, and resource management performance.

2.5 � Dependent variables

2.5.1 � Subjective workload

A modified version of NASA-TLX (Hart and Staveland 
1988) was administered to measure subjective workload 
without pair-wise comparison (Hart 2006). The question-
naire consisted of 6 items, each representing 6 subscales 
(mental demand, physical demand, temporal demand, 
performance, effort, and frustration), on a 21-point gradi-
ent scale ranging from very low to very high (minimum 
score = 6, maximum score = 126).

2.5.2 � Trust

Chancey et al.’s (2017) and Jian et al.’s (2000) trust ques-
tionnaires were administered to measure human–automation 
trust (see Appendix A and B). Chancey et al.’s (2017) trust 
questionnaire included 13 items on a 12-point Likert scale 
ranging from (1) not descriptive to (12) very descriptive 
(minimum score = 13, maximum score = 156). The items 
were categorized into one of three subscales (i.e., perfor-
mance, process, and purpose). Jian et al.’s (2000) trust ques-
tionnaire included 12 items on a 7-point Likert scale ranging 
from (1) not at all to (7) extremely (minimum score = 12, 
maximum score = 84).

2.5.3 � Attention allocation

For each area of interest (AOI), percentage dwell time (PDT) 
were computed by calculating the proportion of time that 
the participants fixated on an AOI. AOI is defined as the 
areas within which the participants’ fixations was analyzed 
to examine PDT. The AOI was defined for each of the track-
ing, system monitoring and resource management displays.

2.5.4 � MATB‑II performance

The mean RMSE for each block measured tracking perfor-
mance. System monitoring performance was measured by 
the mean error rate and response time (RT) for their first 
response in each block separately for hit and FA events. 
Error rates are the proportion of events that participants exe-
cuted incorrectly. RT is the time interval between the onset 

of an event and the participant’s initial response. Resource 
management performance was assessed by the mean vol-
umes for Tank A and Tank B.

2.6 � Procedures

Participants completed an informed consent and demograph-
ics form. Then, participants were screened for color percep-
tion and visual acuity using the Ishihara color blindness test 
and the Snellen chart. Participants were randomly assigned 
to either the tracking or equal priority condition. Following 
Gopher et al.’s (1982) procedure, participants in the equal 
priority condition were asked to prioritize the tracking task 
at a priority level of 30%. That is, participants performed the 
tracking task at a level better than the lowest 30% of their 
own baseline level performance. Alternatively, participants 
in the tracking priority condition were asked to prioritize 
the tracking task at a priority level of 70%. In the practice 
session, participants performed the MATB-II task separately 
for a total of 9 min (part-task training) and simultaneously 
for 3 min (whole-task training). Upon completion of the 
practice session, participants received their average RMSE 
reflecting their baseline performance of the tracking task 
during the whole-task training and a target value unique to 
each participant based on their own baseline performance. 
In the equal priority condition, target value was computed 
by adding one standard deviation to average RMSE. In the 
tracking priority condition, target value was computed by 
subtracting one standard deviation from the average RMSE. 
Participants were instructed to aim for the target value dur-
ing the experimental session. In the experimental session, 
participants completed two 20-min blocks, which differed 
in the difficulty of the tracking task. The two blocks were 
counterbalanced to reduce order effects. After each block, 
participants completed two human–automation trust ques-
tionnaires (Chancey et al. 2017; Jian et al. 2000) and the 
NASA-TLX (Hart and Staveland 1988). Participants were 
provided with research credit for the efforts.

2.7 � Statistical analysis

Bayesian analyses were employed instead of null-hypothesis 
significance tests (NHSTs). Unlike the p value in NHSTs, 
Bayesian analyses provide evidence for or against the effect 
of interest. Specifically, in the default Bayesian framework 
(Rouder and Morey, 2012), Bayes factor, denoted as B10, 
represents a likelihood ratio between statistical evidence for 
a model including an effect of interest to that excluding the 
effect. Thus, its magnitude provides direct information about 
the strength of statistical evidence for or against the presence 
of an effect (Wetzels et al. 2011). Bayes factors were inter-
preted following Jeffrey’s (1961) descriptive term.
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3 � Results

A 2 × 2 mixed Bayesian analysis of variance (ANOVA) 
was employed with Task Load (low vs. high) as a within-
subject factor and Task Priority (equal vs. tracking) as 
a between-subject factor for each dependent variable. To 
examine whether the manipulation of Task Priority was 
successful, Bayesian paired-samples t tests were employed 
to compare the participant’s RMSE for each block with 
the assigned target value computed from the participant’s 
RMSE in the practice session. Two participants were 
removed from the analysis since their system monitoring 
performance was below the inclusion criteria (perfor-
mance accuracy of 50%). Additionally, three participants 
were removed from the analysis due to technical issues 
with the eye tracker. One participant withdrew from the 
study, because the participant felt sick. Thus, a total of 
34 participants (27 females and 7 males; M = 21.06 years, 
SD = 5.83) were included in the analysis.

3.1 � Manipulation check

Equal priority condition. When participants were 
instructed to reduce tracking performance, tracking RMSE 
was close to the target value in the high task load condi-
tion [paired-samples t(16) =  −1.88, B10 = 1.04, d = 0.55]. 
However, tracking RMSE was decisively lower than the 
target value in the low task load condition [paired-samples 
t(16) = 6.78, B10 = 4.60 × 103, d = 1.77]. Figure 2 presents 

the average tracking RMSE and the target value for each 
condition.

Tracking priority condition. When participants were 
instructed to prioritize the tracking task over the other two 
tasks, tracking RMSE decisively exceeded the target value in 
the high task load condition [paired-samples t(16) =  −7.90 
B10 = 2.62 × 104, d = 2.04], suggesting that participants’ path 
deviated from the center more than required by the priority 
instruction. On the other hand, tracking RMSE was substan-
tially below the target value in the low task load condition 
[paired-samples t(16) = 3.18 B10 = 8.43, d = 0.66].

3.2 � Subjective workload

Participants’ subjective workload was decisively higher for 
the high task load condition than the low task load con-
dition, demonstrating successful manipulation of Task 
Load [M = 77.00 vs. 66.00 for the high and low task load 
condition, respectively; F(1, 32) = 20.70, B10 = 376.00, 
η2G = 0.10]. However, data gave no substantial evidence for 
the main effect of Task Priority [F < 1, B10 = 1/2.80] and the 
interaction effect [F < 1, B10 = 1/2.19].

3.3 � Chancey et al.’s (2017) trust scale

The three subscales in Chancey et al.’s (2017) trust scale 
were analyzed separately. Figures 3, 4, and 5 present the 
mean trust ratings for performance-, process-, and purpose-
based trust, respectively. Participants showed substan-
tially lower performance-based trust in the high task load 
condition than the low task load condition [M = 44.18 vs. 

Fig. 2   Mean tracking RMSE as 
a function of the task priority 
conditions and task load. Hori-
zontal bar represents the mean 
target value
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41.62, respectively; F(1, 32) = 6.50, B10 = 3.24, η2G = 0.01], 
replicating the result of the previous study (Karpinsky 
et al. 2018). The main effect of Task Load was qualified 
by the two-way interaction [F(1, 32) = 6.50, B10 = 3.46, 
η2G = 0.01], indicating that the effect was stronger in the 
equal priority condition [M = 40.41 vs. 45.53; paired-sam-
ples t(16) =  −3.56, B10 = 16.64, d = 0.39] than in the track-
ing priority condition [M = 42.82 vs. 42.82; paired-samples 
t(16) = 0, B10 = 1/4.00]. Data gave no evidence for the 
main effect of Task Priority [F < 1, B10 = 1/1.67]. Between 
Task Load conditions, data pattern for process-based trust 

ratings was similar to performance-based trust ratings [F(1, 
32) = 11.58, B10 = 22.86, η2G = 0.03]. However, data indi-
cated no substantial evidence for the main effect of Task 
Priority [F < 1, B10 = 1/1.40] and the interaction effect [F < 1, 
B10 = 1/2.61]. Finally, purpose-based trust did not substan-
tially vary between the conditions [1/1.59 < B10 < 1.62].

3.4 � Jian et al.’s (2000) trust scale

Data indicated no substantial evidence for any of the effects 
[1/2.02 < B10 < 1/1.10].

Fig. 3   Mean scores for 
performance-based trust as a 
function of the task priority 
conditions and task load. Error 
bars represent 95% confidence 
intervals

Fig. 4   Mean scores for process-
based trust as a function of the 
task priority conditions and task 
load. Error bars represent 95% 
confidence intervals
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3.5 � Attention allocation

PDT on the tracking, system monitoring, and resource 
management tasks were analyzed separately. Data gave 
strong evidence that the participants made more frequent 
fixations on the tracking task when the tracking task 
required more frequent corrections [M = 0.46 vs. 0.32 for 
the high task load and low task load, respectively; F(1, 
32) = 45.16, B10 = 6.85 × 104, η2G = 0.16]. Furthermore, 
when the tracking task required more frequent input, 
participants spent less time fixating the system monitor-
ing task [M = 0.11 vs. 0.13 for the high task load and low 
task load, respectively; F(1, 32) = 11.05, B10 = 15.22, 
η2G = 0.04] and the resource management task [M = 0.36 
vs. 0.45 for the high task load condition and low task load 
condition, respectively; F(1, 32) = 34.52, B10 = 7.30 × 103, 
η2G = 0.09].

When participants prioritized the tracking task, as 
expected, participants fixated on the tracking task more 
frequently [M = 0.51 vs. 0.27 for the tracking priority and 
the equal priority condition conditions, respectively; F(1, 
32) = 22.85, B10 = 466.52, η2G = 0.38]. In turn, they fixated 
the system monitoring task less in the tracking priority con-
dition than the equal priority condition [M = 0.10 vs. 0.14; 
F(1, 32) = 7.94, B10 = 5.45, η2G = 0.1], and the same pattern 
of attention allocation was obtained in the resource manage-
ment task [M = 0.31 vs. 0.50 for the tracking priority and 
the equal priority conditions, respectively; F(1, 32) = 15.89, 
B10 = 53.37, η2G = 0.31]. Finally, data indicated no substan-
tial evidence for the interaction effect [1/1.42 < B10 < 1/2.96]. 
Figures 6 and 7 present the PDT on the system monitoring 
display and tracking display, respectively.

3.6 � Tracking performance

The RMSE was decisively greater in the high task load 
condition compared to the low task load condition 
[M = 45.14 vs. 24.99; F(1, 32) = 230.11, B10 = 2.90 × 1014, 
η2G = 0.53], suggesting that the cursor deviated more from 
the target when the tracking task required more frequent 
corrections. Additionally, RMSE was higher when par-
ticipants were asked to reduce tracking performance 
[M = 41.28 vs. 28.84 for the equal priority and the track-
ing priority conditions, respectively; F(1, 32) = 16.16, 
B10 = 71.06, η2G = 0.30]. Data indicated no evidence 
for the interaction effect [F(1, 32) = 2.88, B10 = 1/1.12, 
η2G = 0.01].

3.7 � System monitoring performance

3.7.1 � RTs

There was strong evidence that participants in the low 
task load condition compared to the high task load condi-
tion responded faster to both FA [M = 3.09 vs. 3.62 s; F(1, 
32) = 16.23, B10 = 63.52, η2G = 0.06] and hit events [M = 2.83 
vs. 3.34 s; F(1, 32) = 36.35, B10 = 8.97 × 103, η2G = 0.11]. 
Furthermore, when tracking task was underprioritized, 
participants decisively responded faster to FA [M = 2.48 
vs. 4.24  s; F(1, 32) = 23.02, B10 = 430.06, η2G = 0.39] 
and hit events [M = 2.42 vs. 3.75  s; F(1, 32) = 31.10, 
B10 = 3.04 × 103, η2G = 0.46], compared to the tracking pri-
ority condition. Data gave no evidence for the interaction 
effect in both events [1.17 < B10 < 2.18].

Fig. 5   Mean scores for purpose-
based trust as a function of the 
task priority conditions and task 
load. Error bars represent 95% 
confidence intervals



Cognition, Technology & Work	

1 3

3.7.2 � Error rate

For hit events, participants made substantially more errors 
in the high task load condition than the low task load 
condition [M = 0.09 vs. 0.06; F(1, 32) = 6.87, B10 = 3.46, 
η2G = 0.03] and in the tracking priority condition than 

the equal priority condition [M = 0.11 vs. 0.03; F(1, 
32) = 9.70, B10 = 7.40, η2G = 0.19]. However, for FA events, 
data gave substantial evidence against the main effect of 
Task Load [F < 1, B10 = 1/3.37]. The remaining effects 
were not substantial [1/1.05 < B10 < 2.18].

Fig. 6   Mean PDT on the system 
monitoring display as a function 
of the task priority conditions 
and task load. Error bars repre-
sent 95% confidence intervals

Fig. 7   Mean PDT on the track-
ing display as a function of the 
task priority conditions and task 
load. Error bars represent 95% 
confidence intervals
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3.8 � Resource management performance

Data provided substantial evidence against the main effect 
of Task Load on the amount of fuel in Tank A [B10 = 1/4.05] 
and Tank B [B10 = 1/3.34], indicating that resource manage-
ment performance did not differ between Task Load condi-
tions, and the interaction effect for Tank A [B10 = 1/3.23]. 
No remaining effects were substantial [1/2.28 < B10 < 1.16].

4 � Discussion

Previous works demonstrated that participants exhibit lower 
trust toward imperfect automation on the system monitoring 
task while frequently fixating on the tracking task (Karpin-
sky et al. 2018; Sato et al. 2020). We speculate that partici-
pants indicate lower trust toward the automation, because 
higher priority is set to the tracking task to match their 
attentional demand of the tracking task, causing them to 
misperceive the signaling system’s performance. The present 
study examined whether task priority modulates the effect of 
task load on attention allocation and trust toward imperfect 
automation. Participants concurrently performed both the 
tracking task and the resource management task manually 
while completing the system monitoring task with assistance 
from a 70% reliable signaling system. Following Gopher 
et al.’s (1982) procedure, participants prioritized the track-
ing task by aiming for the objective target value based on 
their baseline tracking performance, resulting in a successful 
manipulation of task priority.

The present study replicated the effects of task load as 
found in Karpinsky et al. (2018). In the high than low task 
load condition, participants reported higher subjective work-
load levels, spent less time scanning the system monitoring, 
and reported lower performance-based and process-based 
trust. Participants were asked to control the moving cursor 
with more frequent disturbances which required more fre-
quent monitoring of the target for the tracking task, where 
participants experienced higher levels of workload (cf. Van-
derhaegen et al. 2020). As noted above, operators develop 
performance-based trust from the current and historical 
behaviors of automation observable to them. Operators may 
develop process-based trust from the appropriateness of the 
algorithm and regulatory mechanisms of the automation’s 
behaviors. Then, purpose-based trust refers to trust base on 
understanding of the intention of the automation design-
ers. Additionally, when the tracking task required frequent 
input, the participant’s PDT on the tracking task elevated 
while the participant’s PDT on the system monitoring task 
decreased. This reciprocal relationship on PDT illustrates 
tradeoffs between the two tasks as the attentional demand 
of the tracking task varied. Together, these findings suggest 
that participants distributed more attentional resources to 

the tracking task to cope with a greater task demand, while 
reducing sampling of the signaling system’s behavior. Con-
sequently, less information about the system’s behavior 
could have induced misperception of the system’s reliabil-
ity and lowered performance-based and process-based trust. 
Within Lee and See’s (2004) theoretical framework, reduced 
trust toward the signaling system could be attributed to a 
mismatch between the participant’s perception of the sign-
aling system’s behavior and the actual capability, and its 
related regulatory mechanisms, of the signaling system. We 
observed differences in the participants’ system monitoring 
performance between task load conditions, which were not 
observed in Karpinsky et al.’s (2018) study. These differ-
ences could be attributed to the presence of the resource 
management task unlike in Karpinsky et al. (2018), presum-
ably degrading system monitoring performance due to the 
added attention demand.

Using Gopher et al.’s (1982) technique, we provided 
a specific target value for the tracking task based on the 
participants’ own baseline performance. Participants were 
asked to prioritize the tracking task at a level of 30% in the 
equal priority condition (worse performance than their base-
line), while 70% in the tracking priority condition (better 
performance than their baseline). The current results show 
that task priority can modulate the effect of task load on 
automation trust. Contrary to our expectation, participants 
in the high task load condition reported lower performance-
based trust in the equal priority condition, but prioritizing 
the tracking task over the other tasks in the tracking priority 
condition eliminated the effect of task load on automation 
trust. One possible explanation is that task priority influ-
enced the mobility of the attention (Yamani and Horrey 
2018). Setting higher priority to perform the tracking task 
modulated the effect of task load on the attentional resource 
capacity, blocking mobilization of attentional resources 
to the signaling system (Young and Stanton 2002). More 
limited resources allocated to the signaling system then 
could have degraded information-processing critical for the 
development of performance- and process-based trust. That 
is, it is possible that the participants did not possess suffi-
cient attentional resources to allocate to accurately observe 
and monitor behaviors of the automation and consider the 
regulating algorithms and characteristics (e.g., reliability). 
Lastly, none of these effects were observed on trust scores 
using Jian et al.’s (2000) questionnaire. This discrepancy 
between Jian et al. (2000) and Chancey et al. (2017) ques-
tionnaires may represent the fact that Jian et al.’s question-
naire is empirically developed while Chancey et al.’s ques-
tionnaire is theoretically driven. On one hand, Jian et al. 
(2000) questionnaire is based on no pervasive theory but 
instead the results of a three-phased study involving elicita-
tion and comparison of words related to trust and distrust. 
Chancey et al. (2017) questionnaire, on the other, adapted a 



Cognition, Technology & Work	

1 3

trust questionnaire on trust during human–computer interac-
tion developed by Madsen and Gregor (2000) to map onto 
Lee and See’s (2004) human-automation trust. Our recent 
preliminary work (Long et al. 2020; Yamani et al. in prepa-
ration) using multi-level confirmatory factor analysis dem-
onstrated that these two questionnaires measure two separate 
constructs, supporting this interpretation.

There exist at least four caveats when interpreting the 
data. First, the present study recruited undergraduate stu-
dents who were not familiar with the MATB task. It calls 
for future research whether the current results generalize to 
trained experts with a better mental model of the task and 
the automation compared to novices. Second, the present 
study did not manipulate perceived risk even though risk 
is a critical factor influencing automation trust (Chancey 
et al. 2017; Sato et al. 2020). Elevated levels of perceived 
risk may further increase the effects of task load and task 
priority, especially in real-world flight environments. Third, 
due to the technical constraints, we were not able to pro-
vide moment-to-moment feedback on their tracking per-
formance as in Gopher et al.’s (1982). The effect of task 
priority might be stronger than found in the current study, 
which requires additional research. Lastly, a more rigorous 
and advanced analysis of eye movement and trust data may 
reveal the underlying processes responsible for the current 
findings. The application of gaze transition entropy analysis 
(Krejtz et al. 2015) would allow quantifying randomness 
of gaze distribution and characterize complex transitions 
among multiple AOIs. These advanced analytic techniques 
may reveal specific eye movement processes critical for the 
development of automation trust.

In conclusion, the current study directly examined the 
effect of task priority on eye movements and trust toward 
an imperfect signaling system in a simulated dynamic mul-
titasking environment. The results not only replicate the 
adverse effect of tracking task demand on trust but also dem-
onstrate that this effect was eliminated when participants 
were instructed to prioritize the tracking task over the other 
two concurrent tasks. The results imply that operators may 
allocate their attentional resources to different tasks based on 
their perceived task demand. Additionally, verbal instruction 
to prioritize the tracking task can override resource alloca-
tion strategies, impacting their trust toward the signaling 
system. Practically, task priority should be considered when 
developing training programs involving human-automation 
interaction and trust in a multitasking environment. Imple-
menting task priority in training programs can potentially 
control an operator’s trust to prevent disuse or misuse of 
automation (Parasuraman and Riley 1997).

There are two important avenues for future research. First, 
future research should consider examining the interaction 
between attentional allocation and working memory resource 
consumption (cf. Baddeley and Hitch, 1974). According to 

Wickens (2002), signal processing can demand the same 
or different resources, impacting operator performance. 
For instance, if visual spatial working memory resources 
are consumed by the primary tracking task signaling fuel 
pump status with a verbal representation might facilitate 
dual-task monitoring as it is drawing from an orthogonal 
pool of resources (Iani and Wickens 2007; Wickens 2002). 
Research examining the interaction between attention allo-
cation and working memory resource consumption might 
lead to effective design recommendations. Second, future 
research should focus on the effects of task priority on trust 
toward and interactions with multiple automated systems. 
Advanced Air Mobility (AAM) is an emerging technology 
that allows transportation of people and goods in urban and 
rural areas via fully automated aerial vehicles (National 
Academics of Sciences, Engineering, and Medicine 2020; 
Chancey et al. 2021). Human operators responsible for AAM 
operations will likely need to monitor and, when necessary, 
manually intervene multiple automated aerial vehicles in the 
AAM platform. This new transportation technology in an 
integrated National Airspace System will impose numer-
ous research questions including development of training 
programs involving task priority as a key element for AAM 
operators and the mechanism of their trust development 
toward a set of automated aerial vehicles.

5 � Conclusion

The current results replicate the previous finding that opera-
tors exhibit less trust toward imperfect automation assisting 
with the secondary task when the primary task demands 
more attention (e.g., Karpinsky et al. 2018). Additionally, 
the results indicate that this attenuation effect is reduced or 
eliminated by explicitly prioritizing the primary task than 
the secondary task assisted by automation. That is, when 
their attention was more constrained due to increased task 
priority, their trust ratings did not vary with different lev-
els of task load even though their workload increased. In 
practice, automation designers should consider task priority 
and operators’ attention distribution when designing train-
ing programs for appropriate human–automation trust in 
dynamic multitasking workspace.

Appendix A

Scale items from the Chancey et al. (2017) trust question-
naire. (The numbers indicate the order that the items were 
presented to the participants when administered).

Performance
2. For me to perform well, I can rely on the automated 

aid to function.
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4. The automated aid’s advice reliably helps me perform 
well.

5. The automated aid’s advice consistently helps me per-
form well.

12. The automated aid always provides the advice I 
require to help me perform well.

13. The automated aid adequately analyzes the system 
consistently, to help me perform well.

Process
3. It is easy to follow what the automated aid does to help 

me perform well.
6. I understand how the automated aid will help me per-

form well.
8. Although I may not know exactly how the automated 

aid works, I know how to use it to perform well.
10. To help me perform well, I recognize what I should 

do to get the advice I need from the automated aid the next 
time I use it.

11. I will be able to perform well the next time I use the 
automated aid because I understand how it behaves.

Purpose
1. Even when the automated aid gives me unusual advice, 

I am certain that the aid’s advice will help me to perform 
well.

7. Even if I have no reason to expect that the automated 
aid will function properly, I still feel certain that it will help 
me to perform well.

9. To help me perform well, I believe advice from the 
automated aid even when I don’t know for certain that it is 
correct.

Appendix B

Scale items from the Jian et al. (2000) trust questionnaire.

	 1.	 The system is deceptive.
	 2.	 The system behaves in an underhanded manner.
	 3.	 I am suspicious of the system’s intent, action, or out-

puts.
	 4.	 I am wary of the system.
	 5.	 The system’s actions will have a harmful or injurious 

outcome.
	 6.	 I am confident in the system.
	 7.	 The system provides security.
	 8.	 The system has integrity.
	 9.	 The system is dependable.
	10.	 The system is reliable.
	11.	 I can trust the system.
	12.	 I am familiar with the system.
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